Bayesian Single Index Model with Covariates Missing at Random

ثبت نشده
چکیده

Bayesian single index model is a highly promising dimension reduction tool for an interpretable modeling of the non linear relationship between the response and its predictors. However, existing Bayesian tools in this area suffer from slow mixing of the Markov Chain Monte Carlo (MCMC) computational tool and also lack the ability to deal with missing covariates. To circumvent these practical problems, we present a new Bayesian single index model with MCMC algorithm using a mode-alignment based proposal density for the index vector for an efficient Metropolis Hastings (MH) algorithm to sample from full conditional distribution. Our method leads to an interpretable model and inference, the efficient evaluation of the likelihood, fast convergence of the MCMC, and a first time extension of inference to missing at random covariates. We also prove the posterior consistency of the overall regression function which has been done for the first time in Bayesian single index model literature.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

مقایسه روش بیزی (Bayesian) و کلاسیک در برآرد پارامترهای مدل رگرسیون لجستیک با وجود مقادیر گمشده در متغیرهای کمکی

Background and Aim: Logistic regression is an analytic tool widely used in medical and epidemiologic research. In many studies, we face data sets in which some of the data are not recorded. A simple way to deal with such "missing data" is to simply ignore the subjects with missing observations, and perform the analysis on cases for which complete data are available. Materials and Methods: We c...

متن کامل

A Bayesian Approach to Estimate Parameters of a Random Coefficient Transition Binary Logistic Model with Non-monotone Missing Pattern and some Sensitivity Analyses

‎A transition binary logistic model with random coefficients is‎ ‎proposed to model the unemployment statues of household members in‎ ‎two seasons of spring and summer‎. ‎Data correspond to the labor‎ ‎force survey performed by Statistical Center of Iran in 2006.‎ ‎This model is introduced to take into account two kinds of‎ ‎correlation in the data one due to the longitudinal nature o...

متن کامل

Missing No More: Using the MCMC Procedure to Model Missing Data

Missing data are often a problem in statistical modeling. The Bayesian paradigm offers a natural modelbased solution for this problem by treating missing values as random variables and estimating their posterior distributions. This paper reviews the Bayesian approach and describes how the MCMC procedure implements it. Beginning with SAS/STAT® 12.1, PROC MCMC automatically samples all missing va...

متن کامل

A note on MAR, identifying restrictions, model comparison, and sensitivity analysis in pattern mixture models with and without covariates for incomplete data.

Pattern mixture modeling is a popular approach for handling incomplete longitudinal data. Such models are not identifiable by construction. Identifying restrictions is one approach to mixture model identification (Little, 1995, Journal of the American Statistical Association 90, 1112-1121; Little and Wang, 1996, Biometrics 52, 98-111; Thijs et al., 2002, Biostatistics 3, 245-265; Kenward, Molen...

متن کامل

Strategy for modelling non-random missing data mechanisms in observational studies using Bayesian methods

Observational studies inevitably suffer from non-responses and missing values. Bayesian full probability modelling provides a flexible approach for analysing such data, allowing a plausible model to be built which can then be adapted to carry out a range of sensitivity analyses. In this context, we propose a strategy for using Bayesian methods for a ‘statistically principled’ investigation of d...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016